Jika A dan B adalah matriks yang mempunyai ordo sama, maka penjumlahan dari A + B adalah matriks hasil dari penjumlahan elemen A dan B yang seletak. Begitu pula dengan hasil selisihnya. Matriks yang mempunyai ordo berbeda tidak dapat dijumlahkan atau dikurangkan.
Jumlah dari k buah matriks A adalah suatu matriks yang berordo sama dengan A dan besar tiap elemennya adalah k kali elemen A yang seletak. Didefinisikan: Jika k sebarang skalar maka kA = A k adalah matriks yang diperoleh dari A dengan cara mengalikan setiap elemennya dengan k. Negatif dari A atau -A adalah matriks yang diperoleh dari A dengan cara mengalikan semua elemennya dengan -1. Untuk setiap A berlaku A + (-A) = 0. Hukum yang berlaku dalam penjumlahan dan pengurangan matriks :
- a.) A + B = B + A
- b.) A + ( B + C ) = ( A + B ) + C
- c.) k ( A + B ) = kA + kB = ( A + B ) k , k = skalar
Matriks Balikan (Invers)
JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan ( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan . Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.
Matriks A = dapat di-invers apabila ad - bc ≠ 0
Dengan Rumus =
Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di-invers dan
Contoh 1:
Matriks
-
- A = dan B =
-
- AB = = = I (matriks identitas)
-
- BA = = = I (matriks identitas)
Contoh 2:
Matriks
-
- A = dan B =
-
- AB = =
-
- BA = =
Contoh 3:
Matriks
-
- A =
Jawab:
Contoh 4:
Matriks
-
- A = , B = , AB =
-
- , ,
-
- =
Transpose Matriks
Yang dimaksud dengan Transpose dari suatu matriks adalah mengubah komponen-komponen dalam matriks, dari yang baris menjadi kolom, dan yang kolom di ubah menjadi baris.
Contoh:
Matriks
-
- A = ditranspose menjadi AT =
Matriks
-
- B = ditranspose menjadi BT =
Rumus-rumus operasi Transpose sebagai berikut:
-
- 1.
- 2. dan
- 3. dimana k adalah skalar
- 4.
Tidak ada komentar:
Posting Komentar